

Stage 1 - Water supply and wastewater disposal system

Status and investment opportunities

Ukraine Recovery Conference July 2025

Mykolaiv city overview

Landscape

General landscape

Residents	< 440'000	
Area	259.8 km ²	
Children	18% of	
	population	
Median Age	39.9 years	
Urban /	~68.7% urban;	
Rural Split	31.3% rural	

Energy landscape

- Regional data is not consistently granular: Ukraine's statistical reporting tends to focus on national aggregates, seldom breaking down to oblast or city levels.
- War impacts visibility: Ongoing conflict since 2022
 has disrupted statistical reporting and data
 infrastructure, particularly in frontline areas like
 Mykolaiv.
- **Data gathering:** Work on the ground is required to collect critical information for specific infrastructure (water, heat, lighting, transport...)

Mykolaiv city overview

Key damage summary

Residential Buildings	>12,000 damaged; 100+ fully destroyed		
Government HQ	Regional Administration building struck, 37 killed		
Healthcare	Hospitals & clinics hit; vital services disrupted		
Education	€45M in damages; major university affected		
	€55M total losses; city without clean water for ~2 years		
Water & Heating	€55M total losses; city without clean water for ~2 years		
Water & Heating Energy Infrastructure	€55M total losses; city without clean water for ~2 years Substations attacked; city-wide blackouts in 2023–2024		
Energy			

Stage 1: Water Supply and Wastewater Disposal System

Water supply and wastewater disposal system

Municipal energy plan

- Heat supply system
- Electricity supply system
- Gas supply system
- Household waste management system
- Public and residential buildings
- Outdoor lighting systems
- Public transportation

Stage 1 - Water Supply and Wastewater Disposal System
Basic Water Data

- Water supply to the network: 22'500'000 m³/year
- Population receiving water supply services and drainage: 395'000
- The total length of water supply networks: 1220.17 km.
- The total length of wastewater networks is 726.93 km.
- The city's water supply system includes 32 water pumping stations.
- The sewage system includes 34 sewage pumping stations located in different areas of the city

Stage 1 - Water supply and wastewater disposal system

<u>Challenges faced today</u>

- In 2024, drinking water losses reached 35%.
 - a. Severe infrastructure degradation, leaks, unbilled consumption, metering issues
 - b. Ukraine's national NRW average was already high pre-war (~25 30%); Mykolaiv's figure is above national norms, suggesting critical underinvestment and war-related damage.
- Multiple water treatment plants are at end of life
 - a. 40 60-year-old facilities; 50% of pipes are >35y old (some above 50y)
 - b. The main water intake and treatment facility, located at the Dnipro-Bug Estuary, suffered multiple missile attacks and now operates at reduced capacity (2022).
 - c. Many facilities have corroded tanks, outdated chlorine-based disinfection, and lack redundancy.
 - d. Water treatment infrastructure is deteriorated: Mechanical treatment capacity: 94,000 m³/day; Biological treatment: only 20,000 m³/day (efficiency & health concerns)

Stage 1 - Water supply and wastewater disposal system

<u>Challenges faced today</u>

- High energy losses due to water rise
 - a. System has no variable frequency drives (VFDs) or hydraulic modelling
- Significant negative impact on the environment
- There are practically no systems for providing energy from non-traditional sources (Still >99% reliant on grid electricity and diesel backup)
- The share of the cost of electricity in the adopted tariff for water supply is 33.74%, and in the tariff for water disposal 29%.
- The company lacks modern management tools (e.g., SCADA)
 - a. GSM-based, analogue, low-bandwidth
 - b. No integration with digital flow meters or VFDs
 - c. Opportunity to support automated control or performance optimization with SCADA

Stage 1 - Water supply and wastewater disposal system

<u>SWOT Analysis</u>

Strengths	Weaknesses	
Strong municipal commitment to infrastructure rehabilitation	Severe war-related damage to critical infrastructure	
Existing technical documentation & investment plans	Lack of automated monitoring/control systems	
Engaged technical universities & expert base	Limited availability of updated performance data	
Opportunities	Threats	
Access to international recovery and donor funding	Ongoing conflict and security risks	
Potential for modernization with sustainable technologies	Limited local fiscal space for investment	
Growing interest in digitalization & resilience planning	Potential delays in regulatory and procurement processes	

Stage 1 - Water supply and wastewater disposal system

<u>Existing projects for investors*</u>

- **Wastewater Treatment Plant structure upgrade:** USD 1.6M
- **Pumping Station Retrofit:** USD 1.1M
- (03) MKE Sewage Pumping Station modernization: USD 2M

Expected benefits:

- Improved reliability
- Reduced water losses (up to 90%)
- Reduced energy consumption (up to 20%)
- Real-time system control

Stage 2 - Water supply and wastewater disposal system Formation of investment-attractive projects

- **Environmental Performance**: system improvements
- **Energy Efficiency:** system upgrades
- Management Efficiency improved
- Renewable, Non-conventional energy sources introduced
- Pipeline rehabilitation projects
- Retrofit and replacement of obsolete equipment

Stage 2 - Water supply and wastewater disposal system

Forecasted impact for infrastructure projects

- Reduction of electricity consumption by up to 35%
- 2 Ensuring 100% wastewater treatment
- (3) Implementation of solar energy systems, approximate total capacity of about 1000 kW
- Renewal of about 1000 km of networks
- Ensuring effective management with the help of SCADA systems, etc.
- 6 Modernization of power equipment
- Modern staff

Stage 2 - Water supply and wastewater disposal system

Summary of priority projects (expert assessment)

Project	CAPEX (USD)	Readiness	Key Benefits
Modernization and replacement of power equipment	1.3 M	Feasibility study is required	Improved reliability, reduced energy consumption (up to 20%), real-time system control, reduced CO
Implementation of solar energy systems	1.1 M	Feasibility study is required	Improved reliability, reduced CO=0
Pipeline rehabilitation projects	180 M	Feasibility study is required	Improved reliability, reduced water losses (up to 90%), reduced energy consumption
Ensuring effective management with the help of SCADA systems, etc.	2,5 M	Feasibility study is required	Improved reliability, reduced water losses, reduced energy consumption (up to 40%), realtime system control, reduced CO

THE EXPECTED VALUE OF THE INVESTMENT IS ABOUT 250 MILLION USD

Stage 2 - Water supply and wastewater disposal system

These projects represent deployment-ready investments to support Mykolaiv's resilient recovery.

We invite partners to join us in co-developing feasibility studies, supporting implementation, and helping scale these solutions.

Stage 1 - Water supply and wastewater system development projects

Ukraine Recovery Conference July 2025

Thank you for your attention May we move forward together toward peace, sustainability, and prosperity!

Contact us

Yannick Heinrich @ energy-base.org

Dimitris Karamitsos

Dimitris.karamitsos@energy-base.org

@energy_BASE

stiftung-BASE